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Abstract A
The probabilistic performance of a number of algorithms for the Satisfiabil-

ity Problem (SAT) has been investigated analytically and experimentally using a
constant-clause-sse model generating a clauses of k literals taken from r variables
as well as a constant-density model generating a clauses containing each of r vari-
ables independently with probability p. In the case of the constant-density model
one algorithm has been shown to solve SAT In polynomial time with probability
approaching I as a and r get large when p > n(n)/r and another has been shown
to solve SAT in polynomial time with probability approaching 1 a a and r get
large when p < ln(n)/(2r). In the case of the constant-clause-else model the unit
clause heuristic has been shown to be effective, in probability, when lnm..X a/r <
2 .(k- 1)((k- 1)/(k -2))* *(k- 2)/k and another heuristic has been shown to be
effective, in probability, when lim.,.. s/r < (l+in(k-1)).2*e(k-2)/k for k > 3.
When k = 3 the unit claus heuristic with the next variable given an assignment
which satisfies the maximum number of clause has been shown effctive, In prob-

..J ability, when lin,. n/r <3. xemnents have shown the existence of other
algorithms which perform better, In the probabilistic sese, than the algorithms
analysed.
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1. Rmarch Objeetiv
The goal of this research Is to develop and analyse algorithm which can, In some
practical sense, solve certain NP-complete problem efficiently. By solve we mean
determine whether a solution to a given Instance of an NP-complete problem exdss
where, for the problem we have considered, a solution is an assigment of values to
a lat of variables which cause some predicate to be true. We do not consider actually
finding solutions when they exist since doing so adds unnecessary complexity to the
statement of the algorithms: the algorithms we consider can all be modified to find
solutions without signficantly altering performance. NP-complete problems ar
found in Crytology, Operations Research, Artificial Intelligence, Computer System
Design and many other areas. There is no known algorithm for any NP-complete
problem which runs in time bounded by a polynomial on the length of the input
(polynomial time) in the worst case nor is one likely to be found. We seek algorithm
which solve nearly every instance of specific NP-complete problems in polynomial
time. K-

To prove an algorithm A solves nearly every instance of a specific problem X in
polynomial time we establish a probability distribution D(n) on instancm of X of
%ise' a (referred to as a model) and then show that A solves a random instance of
X generated according to D(a) in polynomial time with probability appmag 1
as a approaches infinity; then A is said to solve X efficiently in probability. Usually
the proof holds only under certain conditions. Sometimes, when D(n) is such as to
heavily favor the generation of Instances with solutions, the weaker result that A
6proves the existence of a solution to a random instance of X In polynomial time
with probability bounded from below by a constant greater than sero is obtained
Instead; then A is said to solve X efficiently with bounded probability. Again, the
result holds only under certain condition. (one condition that amt be satilefid is
that nearly all random instances generated according to D(s) have a solution). The
algorithms that we consider here 'prove' the existence of a solution by repeatedly
choosing a variable and an assignment to that variable until the predicate is true: at
each step the possible choices are ranked baed on some heuristic and the top raked
possibility is chosen. For the kinds of algorithms and distributions we consider, If
A solves X efficiently with bounded probability under some set of condition then
we may regard this as strong evidence that the Bechved algorithm, using the
heuristics of A to decide the order In which to consider variables and assign value,
solves X efficiently in probability under the same set of conditions.
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The NP-complete problem we awe primarily interested In is theSasaily
problem (SAT). An Instance I of SAT Is a boolean expression In conjunctive normal
form ad a solution to that instance, if one ad"t. is a truth assignment to the
variables in I which cause I to have value true; such a truth assignment is said
to satisfy L. SAT remains NP-complete even If all disjunctions contain as few as
three literals. SAT is closly related to problems in Artificial Intelligence as well
as other NP-complete problems. Algorithms which solve SAT efficiently In some
probabilistic sense will, with slight modification, probably solve other NP-complete
problems efficiently in the same probabilistic sense.

........................-ssion For

"R awd!

9 )f-b 
pecla)

2

*~~ ..*% V . . .9 ..* . 9



2. Status of the Resemich
Although there has ben a significant level of research activity In this area no one
has succeeded in getting the results we have obtained for algorithms designed to
solve Instances of SAT efficiently In some probaik sense.

Two models have been used for analysi: one is a constant-clause-ulse model and
the other is a constant-density model. According to the constant-clause-sue model
a random instance of SAT contains a clauses (disjunctions) selected indepedently
and uniformly from the set of all possible disjunctions containing exactly k literals
which can be composed from r boolean variables under the restriction that no two
literals In the same disjunction are amociated with the same variable. We are
interested in the case k > 3 since SAT is NP-complete if clauses are allowed to hae
three or more literals. For the special case k = 3 SAT I called -AT. According
to the constant-density model a random Instance of SAT contains a clauses each
generated independently as follows: for each of r variables (a) place into the clause,
with probability p/2, the uncomplemented literal associated with the variable, (6)
place into the clause, with probability p/2, the complemented literal associated with
the variable and (c) place neither complemented nor ucomplemented literal into
the clause with probability 1 - p.

The following two algorithms solve SAT efficiently in probability under the
constant-density model when a and r are polynomially related. Let I be a random
instance of SAT.

Al: Repeat
Randomly choose a truth assignment t for the variables in I

Until t satisfies I
Output(as solution edst?)

AN: Search I for a null clause
If a null clause was found Then Output(no solution exist?)

Else Output(scannot determine whether a solution exists)

3



In 131 It is shown that At solves SAT efficiently in probability when p > ln(n)/r
and A2 correctly determinus that no solution exists for a random Instance of SAT
with probability approaching 1 as a and r approach infinity when p < ln(n)/(2r).
Thus, under the comstant-densaty model, SAT is solved efficlently in probability by
algorithms Al and A2 for all but a vanishingly small range of values of p If and r an
polynomially related (it is easy to see why this is a reasonable restriction). Although
these results are theoretically Interesting they have little practical meaning since It
is unlikely that a random truth asignment satisfies a random Instance of SAT and
that a random Instance of SAT contains a null clause. The results obtained for the
constant-clause-sise model are probably more meaningful.

Assuming the constant-clause-sise model, the algorithms below solve SAT ef-
ficiently with bounded probability under various conditions. The algorithms are
defined using the following symbols, terms and functions. Let V = (ua, Y,..., v) be
the set of r variables from which clauses arecomposed and let L = (9 ,. W ,,IW]
be the set of 2r literals associated with V (the set of Iiterals contained in a clause
c is a subset of L such that for all 1 _< i :_ r both vg and Vj do not appear
in c). For every a G L, var(s) is the variable associated with a (for example,
war(Y) = wr('1) = vi). For all 1 _< i _< T, Y e L and j C L re aid to be
complementary literal. For every u e L, comp(s) is the literal in L which is com-
plementary to V (for example, Comp(9,) - VI). If a clause contains only one lItera
it is called a unit clause and a unit clause may be regarded as being a litera Let I
be a random instance of SAT generated according to the constant-clause-ise model
Let u denote the number of occurrences In I of literal u.

AS: Repeat
U there is a unit clause I n I Then -

Else choose * randomly from L
Remove from I all clauses containing v
Remove from I all occurnces of comp(s)L,- , - (0, WMW

Until I is empty or the edst two complemetary unit clauses in I
If Iis empty Then Output('a solution exs')

Else Output(cannot find a solution')

4



A4: Repeat
U there is unt lause I in I Then a +- IEbeemX

Choose 9 randomly from V
Ul1 I>IVI then .,-Yels *u-

End
Remove from I all clauses containing
Remove from I all occurrences of comp(s)
V .- V - (t(s))
I& L - (u,cop a))

Until I is empty or ther exist two mp tary unit clauses in I
f I is empty Then Output(a solution s')

Else Output(Ocannot find a solution')

AS: Repeat
Let c bea smallest clause in I
Choose * randomly from c
Remove from I all clauses containing u
Remove from I all occurrences of comp(s)

Until I is empty or there exist two complementary unit clauses in I
f I is empty Then Output(ga solution exists')

Else Output(Icannot And a solution')

In [4] the results below are obtained band on the constant-daue-sise modei.
In this analysis the parameter k is assumed fixed and n and r ae allowed to pow
toward co.

1. There exists a constant d and a constant e > d such that a random in-
stance of SAT has a solution with probability approaching 1 as a, r -4 co i
]in,,r.. n/r < -d/ln(l - 2- ) and a random instance of SAT has no solution
with probability app 1 as a,r -+ o If limr. > ir @/ -e/In(l-2-h).

2. Neither Al nor A2 solve SAT eftlently In probability or with bounded prob-
ability for any fted (function of k) lmtig ratio n/r

. Algorithm AS solves SAT efficintly with bounded probability If

1 -am,/, < !tfrk*Or-*JO k k-2



and does not solve SAT with probability approahing I when

am ft// > !- fo I k 23
s~r~eS (Lk-2,

4. Algorithm A4 solves SAT efficiently with bounded probability if
lim n/r< 2.8 wmhk=3

U,?.-

and does not solve SAT with probability approaching 1 when

Um n/r > 2.S md k = 3

5. Algorithm AS solves SAT efficiently with bounded probability if

Um%/r < (I + ln(k- 1))

for the case k > 3 and if

lim n/r<8 3 orthecek=3

The two algorithms below have been studied experimentally using the constant-
clause-sise model with k = 3. These algorithms dynamically amig weights to each
literal in L and these weights are used to select the next literal. The weighting
functions are defined as follow:

Ce#[0

where S(1) Is the collection of clauses in I containing literal I, P() Is the collection of
clauses resulting from removing clauses cont-ining I and all occurrences of comp(Q)
from I and .se(c) Is the number of literals contained in clause if c has not been
removed from I and esze(c) = oo otherwise. It should be noted that ,se(c) - k
for all a In a random Instance of SAT gmnerated according to the constant-clause-
@se model but sixe(c) changes as literals ae removed or when e contains the next
chosen literal in the algorithms below. It should also be noted that w,(l) Is a
measure of the expected number of solutions that eidst for an Instance of SAT with
war() set so that liteMl I has value true; choosing a truth algnment to maimie
the expected number of solutions to the remainder of the instance seems to be a
reasonable heuristic and Is the bash for algorithm AT.
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AS: Repeat* *-- 1:1 e Lg VP' e L o(O >: ,(F)
Remove from I all clauses containing a
Remove from I all occurrences of aomp(*)
L .- L-sgcomp(a))

Until I is empty or there exist two complementary unit clauses in I
If I is empty Then Output(a solution exists)

Else Output("cannot find a solution!)

Alt Repeat
u .- 1: I e L, VP e L w(I) >: w(')
Remove from I all clauses containings
Remove from I all occurrences of comp(u)
L.+- L-{us Cmp(V))

Until I is empty or there exist two complementary unit clauses in I
I I is empty Then Output(sa solution exist')

Else Output(Ocannot find a solution')

In f5] the following results of experiments on AS and AT using the constant-

clause-slze model to generate random instances are reported:

6. Algorithm AS solves SAT efficiently with bounded probability if

lim n/r<3.7 when k=3

and does not solve SAT with probability approaching I if

lim n/r>8.0 wAm k=S

7. Algorithm AT solves SAT efficiently with bounded probability if

urn n/r<3.6 whenk=3

and does not solve SAT with probability approaching1 If

Hr n/r>.I whenk--3
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S. A random instance of SAT generated according to the constant-clanse-se
model has no solution with probability Ipproaching 1 when a, r -- o if

Unm a/r<4 when k=3

9. A random Instance of SAT generated according to the constant-clause-sse
model has a solution with probability approaching 1 when n, r -. co if

Urm a/r>4 when k=3
n.,-.0

3. Interpretation of Results
The constant-clause-sihe model seems to generate non-trivial Instances of SAT since

* the simple-minded algorithms Al and AS which work so well on instances gener-
ated by the constant-density model do not work at all well on random instances
generated according to the constant-clause-size model when the limiting ratio of
n/r is fixed (i.e. a function of k). The case of the limiting ratio of n/r being fixed is
Important since random Instances are hardest* when the probability that a solu-
tion exists is about 1/2 and this occurs when the limiting ratio is fixed. Despite the

* relatively 'hard' instances generated by the constant-clause-sise model a number of
algorithms have been shown to 'prove" that a solution to a given random instance

- I of SAT exists for nearly every I that has a solution when k = 3; these algorithms
are not quite as effective for arbitrary k.

*Perhaps surprising is the difference In the range of n/r over which algorithms
perform well probabilistically. In particular, AS and AS are not much different in
structure but the bound on the limiting ratios of n/r for which good probabilistic
performance is achieved is larger for AS by a factor of about In(k). Furthermore,
from a previous result 121, the bound on ratios a/r for which good probabilistic
performance of the pure literal heuristic is achieved does not even Increase with k
while the bounds for ASA4 and AS are all exponential in k.

We have been able to rank a number of algorithms for solving SAT by their
probabilistic performance. One of these algorithms has been shown experimentally
to be extemely effective on Instances of S-SAT when those Instances have solutions.
We have not yet succeeded In producing an algorithm for SAT which, under the
constant-clause-ise model, Is effective In determining that no solution exists when
Its Input Is an Instance with no solution. This Is the next step In this research.
After this we intend to apply the algorithms and analysis mentioned here to other
NP-complete problems.
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